Department of Entomology
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

[Seminar Blog] Walking generalist predators as pest management in high tunnel systems

11/26/2024

 
Figure 1. External view of a high tunnel system (from Dr. Wallingford’s presentation, used with permission).Figure 1. External view of a high tunnel system (from Dr. Wallingford’s presentation, used with permission).
 written by: Makala Nicole Harrison 
​

The looming threat of climate change highlights the importance of developing agricultural systems that can stand against the forces of pest arthropods, especially insects, and extreme weather. As part of the UMD Department of Entomology seminar series, Dr. Anna Wallingford – a USDA research scientist in the Invasive Insect Biocontrol & Behavior Lab in Beltsville, Maryland – discussed how the use of high tunnel systems can protect crops and increase their productivity. High tunnel systems, also called “hoop houses” consist of metal hoops covered in plastic or fabric to create a greenhouse-like structure (Fig. 1). High tunnel systems protect crops from rain and extreme weather, both being consequences of climate change, which increases the shelf-life and marketability of the produce while decreasing the occurrence of fungal diseases. While widespread use of high tunnels is fairly recent in the United States, the structures are used worldwide [1]. The structures can utilize varying levels of technology, some have electricity that powers automatic rolling side walls and air conditioning, while others are simple structures that require the farmer to roll up the sides manually. When the tunnels are equipped with passive heating and cooling systems, they are able to extend the growing season by staying warm into the cooler winter months. The tradeoff for using high tunnel systems is that unique pest control issues can arise. 


Read More

Biodiversity is more than meets the eye

11/21/2024

 
Fig. 8. Schematics of wild-type and Blimp1 mutant embryos. (Fig. 8. Schematics of wild-type and Blimp1 mutant embryos. (photo credit: Science Advances)
written by: Pick lab
​
Visible features of organismal body plans are often highly conserved within large taxa. For example, different species of birds have wings and beaks. For insects, segmentation is a shared and defining feature of the body plan.  Screens in the model insect Drosophila previously identified genes responsible for the development of body segments and one might have thought that different insects would all utilize the same genes, given that they all are segmented. In a paper published from the Pick lab in Science Advances, Reding et al. show that this is not the case: different insects use different genes to achieve the same outcome – formation of body segments. Studying the milkweed bug, Oncopeltus fasciatus, graduate student Katie Reding undertook a challenging screen to ask if novel genes control segmentation in this species. Collaborating with scientists at the Institute for Genome Science, University of Maryland School of Medicine, she analyzed the sequences of genes expressed at time points during embryonic development when segmentation is established. She then analyzed the expression patterns of over 50 of these genes and identified one, Blimp1, expressed in a pattern expected for a role in segmentation. She followed this with RNA interference experiments that suggested a role for Blimp1 in generating segments. To stringently test Blimp1’ s function, Katie used CRISPR/Cas9 genome editing, a technique she had previously developed in the Pick lab, to generate a mutation in the newly identified gene. This mutation showed a Drosophila-like segmentation phenotype, although Blimp1 is not required for segmentation in Drosophila. This exciting result demonstrated genetic diversity underlying the highly conserved feature of segmentation in insects: during evolution, regulatory genes have changed function dramatically but without any impact on phenotype or morphology. Thus, organisms are even more diverse than their phenotypes show us: even for a shared feature, the genes controlling it may be wholly different in different species - an invisible layer of biodiversity in animal systems. 

[Seminar Blog] The Xerces Society: An Invertebrate Conservation Mission

11/19/2024

 
comicFigure 1. Where did all the bugs go?!? My window sure is clean though!
written by: Robert Salerno
​
​Have you noticed throughout the past few decades that the windshield of your vehicle rarely seems to receive smudges from collisions with insects anymore? Is it because the aerodynamics of your vehicle have improved so much so that the insects glide right by unscathed; or are there other forces at play?
​
​This decrease reflects a larger problem. Studies around the world have revealed declines in insect abundance, diversity, and biomass throughout the past 20+ years1. It should come as no surprise that insects are facing a multitude of anthropogenic threats including habitat loss, climate change, pollution, and the introduction of invasive species (just to name a few). If these anthropogenic influences weren't severe enough on their own, combining them leads to interactions and synergies which have the potential to wreak havoc on insect communities.


Read More

Rake Less, See Butterflies More

11/7/2024

 
Figure 1: Dr. Ferlauto with his netted emergence traps Figure 1: Dr. Ferlauto with his netted emergence traps
written by: Ben Burgunder
​
Across Maryland and the Mid-Atlantic United States, fall is rapidly approaching. But as the weather chills and pumpkins appear on porches, yard-owning Americans have a big choice to make: should they remove fallen leaves or let them rest? Every year, trees in urban America drop an estimated 37 million tons of leaves (Nowak & Greenfield, 2018). When homeowners elect to remove their fallen leaves, what happens to the spiders, caterpillars, beetles, and other insects that rely on decaying leaves for food and shelter? While it had been determined that removing leaves was bad news for soil-dwelling arthropods (Ober and DeGroote, 2014), inspiring campaigns to “Leave the Leaves” (AP News, Xerces Society), no one had yet tested this for aboveground insects and spiders.

Dr. Max Ferlauto (Fig. 1), the state entomologist of Maryland and recent graduate of the University of Maryland’s Department of Entomology, was up for the challenge. Over two years, he experimented with the fallen leaves of 20 pesticide-free suburban Maryland yards to work out the hidden effects of leaf removal on insects and the ecosystem. He set up experimental and control square meters across the lawns. In the experimental squares in ‘high maintenance’ spaces, areas of yards that were regularly raked, he added leaves. In the ‘low maintenance’ experimental squares, located in areas of the yard where leaves were historically left to rest, he removed the leaves. In the spring, he set up traps that captured insects emerging from these squares, which allowed him to sample the tens of thousands of pollinators, predators, herbivores, and decomposers that dwell in yards.


Read More

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    April 2025
    March 2025
    February 2025
    December 2024
    November 2024
    October 2024
    June 2024
    May 2024
    April 2024
    March 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)