A Better Mosquito
The most obvious solution is the one you implement with your hand whenever a mosquito lands on you: kill the mosquito. As a result, much of the work in vector biology aims to cut in on the dance between mosquitoes and humans; however, during the UMD Entomology colloquium this week, Dr. George Dimopoulos of Johns Hopkins University explained how he is trying to tip the scales where the mosquito and the parasite interact.


1. Dong, Y., Das, S., Cirimotich, C., Souza-Neto, J. A., McLean, K. J., & Dimopoulos, G. (2011). Engineered Anopheles immunity to Plasmodium infection. PLoS Pathog, 7(12), e1002458-e1002458.
More by Dr. George Dimopoulous:
Cirimotich, C. M., Dong, Y., Clayton, A. M., Sandiford, S. L., Souza-Neto, J. A., Mulenga, M., & Dimopoulos, G. (2011). Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science,332(6031), 855-858.
Ramirez, J. L., Short, S. M., Bahia, A. C., Saraiva, R. G., Dong, Y., Kang, S., ... & Dimopoulos, G. (2014). Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.
About the author:
Brian Lovett is a PhD student studying mycology and genetics in agricultural and vector biology systems. He is currently working on projects analyzing mycorrhizal interactions in agricultural systems, the transcriptomics of malaria vector mosquitoes, and the genomes of entomopathogenic fungi.