Department of Entomology
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Researchers document high recovery rate and spatial spread of EAB biological control agent S. galinae

5/24/2022

 
The emerald ash borer (EAB) is a small and mesmerizing beauty and also one of the most destructive invasive species in the US. Since its introduction to the US in 2002 it has killed millions of ash trees causing serious economic and ecological damage. One approach for long term EAB management has been to introduce parasitic wasps from EAB’s native range to the US for biocontrol. A recent study by UMD and USDA researchers, Stokes Aker, Rafael de Andrade, Jian Duan and Dan Gruner  – published this year in the Journal of Economic Entomology – takes a closer look at the performance of these wasps. 
 
Their study suggests that Spathius galinae has a higher recovery and spatial spread compared to Spathius agrili, at least in Maryland. The authors would like to see continued monitoring and evaluation of both species to gain a better understanding of why one parasitoid appears to have gained a better foothold in Maryland than the other. Information like this is important to improve the efficacy of current biocontrol programs against EAB in North America.
 
Before concluding a shout out is needed. Congrats to Stokes Aker this is his 1st first-authored paper, and to Dan Gruner his proud UMD mentor.

AGNR features study co-authored by Roswell

4/14/2022

 
Beyond the honeybee: How many bee species does a meadow need for pollination and ecosystem health? Way more than previously known according to a new study by UMD Ento's postdoctoral associate Michael Roswell. Follow link to read full AGNR article, https://go.umd.edu/qD2

Share on facebook: https://www.facebook.com/UMDAGNR/posts/10159818456417248
Share on twitter: https://twitter.com/UMD_AGNR/status/1514231618260586502?s=20&t=NsKizr_un7P_ZwbYR3mC_A

More sustainable strategy for mite management in timothy grass

2/15/2022

 
Eriophyid mites, aka rust, gall and bud mites feed on all kinds of plants and have been estimated that there are close to a million species on the planet. Several species of eriophyid mites can cause stunting, curling and brown discoloration of leaves on host plants leading to millions of dollars in losses in production on grasses, ornamentals, forest and fruit trees. So what can farmers and other agricultural agents do to manage these mites? And can management be done sustainably? 

Researchers from the University of Maryland Department of Entomology Professor Emeritus Galen Dively and MS student Maggie Hartman team up with USDA's Ron Ochoa to investigate a more sustainable strategy for mite management involving the integration of chemical control, host plant resistance, and cultural practices. Their study, "Population Dynamics of Eriophyid Mites and Evaluation of Different Management Practices on Timothy Grass" published this month in the Journal of Economic Entomology, is the first to demonstrate the relative effectiveness of alternative management practices that could reduce the need for chemical control of eriophyoid mites on timothy grass. Read the paper here>>.

Share with your networks via Facebook, Twitter, etc.

Phylogenetic backbone for Calceolaria L.

2/8/2022

 
Picture
The beautiful and abundant plant genus Calceolaria L. is one of most iconic Andean plant genera. However, its evolutionary relationships have remained evasive despite dozens of years of research. Further understanding of the evolutionary history of the group can hold the key to recognizing patterns of diversification across the world's largest mountain ranges, the Andes. Researchers Lauren Frankel (former researcher in the EspindoLab), Dr. Murúa and Dr. Espindola’s latest paper – published this week by the Botanical Journal of the Linnean Society – used chloroplastic genome analyses to help fill in the gap of Calceolaria’s evolutionary history. Through this approach they were able to resolve for the first time the backbone of the genus, identify two main clades that also display interesting pollination-relevant traits, and estimate a timing of diversification contemporaneous to major climatic and orogenic events. Check out paper here>>

Additional shout out to Lauren Frankel; this is her 1st first-authored paper, and to Anahi Espindola her proud UMD mentor. Fun fact, this is the same journal in which Anahi had her first first-author paper published!

Please share with networks on facebook,  twitter, etc.

Check out a few more FALL 2021 Publications

12/17/2021

 
^Eckert RA, Lamp WO and Marbach-Ad G. Jigsaw dissection activity enhances student ability to relate morphology and ecology in aquatic insects. Journal of Biological Education. 2021  DOI: https://doi.org/10.1080/00219266.2021.2006268

^Evans K, Underwood RM and López-Uribe MM. Combined effects of oxalic acid sublimation and brood breaks on Varroa mite ( Varroa destructor ) and deformed wing virus levels in newly established honey bee ( Apis mellifera ) colonies. Journal of Apicultural Research. 2021. DOI: https://doi.org/10.1080/00218839.2021.1985260

Satler JD, Carsten BC, Garrick RC and Espíndola A. The Phylogeographic Shortfall in Hexapods: A Lot of Leg Work Remaining. Insect Systematics and Diversity. 2021. https://doi.org/10.1093/isd/ixab015

Tait G, Mermer S, Stockton D [and 46 others including Hamby KA and ^Schöneberg T]. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. Journal of Economic Entomology. 2021. DOI: https://doi.org/10.1093/jee/toab158

Marsden BW, Ngeve MN, Engelhardt KAM and Neel MC. Assessing the Potential to Extrapolate Genetic-Based Restoration Strategies Between Ecologically Similar but Geographically Separate Locations of the Foundation Species Vallisneria americana Michx. Estuaries and Coasts. 2021. DOI: https://doi.org/10.1007/s12237-021-01031-z

*Graham PL, ^Fischer MD, Giri A, and Pick L. The fushi tarazu zebra element is not required for Drosophila viability or fertility. G3 Genes|Genomes|Genetics. 2021. DOI: https://doi.org/10.1093/g3journal/jkab300

Kard BM, OI FM, Thorne BL, Forschler BT and Jones SC. Performance Standards and Acceptable Test Conditions for Preventive Termiticide and Insecticide Treatments, Termite Baiting Systems, and Physical Barriers for New Structures or Buildings Under Construction (Pre-Construction; During Construction; Post-Construction). Florida Entomologist. 2021. DOI: https://doi.org/10.1653/024.104.0308

Hensel MJS, Silliman B., van de Koppel J, Hensel E, ^Sharp SJ, Crotty SM and Byrnes JEK. A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions. Nature Communications. 2021. DOI: https://doi.org/10.1038/s41467-021-26504-4

Bold ENTM Faculty; ^ENTM current/former graduate student or post-doc; *ENTM research staff

VIA MAKES KEY RECOMMENDATIONS FOR HEALTHIER SOIL AND A HEALTHIER PLANET

12/15/2021

 
In 2017, Professor Sara Via started a collaboration with the Maryland Department of Agriculture on soil health and how farmers can manage their land to store carbon in agricultural soils.  As part of this collaboration and her role as one of Maryland's representatives to the Natural and Working Lands Workgroup of the US Climate Alliance, Dr. Via began a review of the scientific literature on the topic to evaluate the carbon-sequestering effectiveness of a set of 23 practices, including reduced tillage and the use of cover crops.  This review led to a comprehensive report that demonstrates how increased adoption of these key practices can make agriculture a significant part of the American climate solution. The report, titled “Increasing Soil Health and Sequestering Carbon in Agricultural Soils: A Natural Climate Solution” highlights a set of farming practices that improve soil health, reduce greenhouse gas emissions, and store carbon in the soil while providing economic benefits for farmers and environmental benefits for all. The table of expected GHG reductions from using each of the recommended practices was integrated into Maryland's 2030 Greenhouse Gas Reduction Act Plan as Appendix K.  For more information and to download the report, check out publisher Izaak Walton League of America’s press release here>>.

PICK LAB OBSERVATIONS OFFER CLUES INTO UNDERSTANDING HOW DIFFERENT MODES OF SEGMENTATION EVOLVE

12/15/2021

 
 In the mosquito Anopheles stephensi, expression of segment marker gene Engrailed (brown) is activated in a wake of a wave of opa (purple) expression, which times segment specification during Drosophila development.Image caption- In the mosquito Anopheles stephensi, expression of segment marker gene Engrailed (brown) is activated in a wake of a wave of opa (purple) expression, which times segment specification during Drosophila development.
Arthropods are famous for their segmented body plans, which contribute to their vast diversity through modular addition of appendages, wings and more. Segments are patterned early in embryonic development, and this process has been intensively studied in the fruit fly, Drosophila melanogaster. Drosophila is a premier model system, owing to ease and speed of culture and abundant genomic and molecular tools. However, it’s segmentation process is seemingly unlike that of most arthropods. Drosophila establishes all its segments at the same time, whereas other species specify segments one at a time over a long growth period. It has long been assumed that distantly related flies, such as mosquitoes, make this segments the same way that Drosophila do. However, while exploring the loss of an important segmentation gene from mosquito genomes, the Pick lab noticed that mosquito segmentation appeared to represent an intermediate, blending aspects of simultaneous and sequential segmentation. In their new work, published in JEZ-B, Alys Cheatle Jarvela, Catherine Trelstad, and Leslie Pick characterize this intermediate segmentation mode in the mosquito, Anopheles stephensi, and show that it is likely controlled by a progressive wave of developmental regulatory gene expression. These observations offer clues into understanding how different modes of segmentation evolve and have opened new lines of research into segment patterning in the Pick lab.

Fritz lab finds Washington DC mosquitoes are using belowground urban infrastructure as breeding and development sites

12/1/2021

 
In spring of 2018 the Fritz Lab was asked to investigate a mosquito infestation on federal property in Southwest Washington, DC. So PhD student Arielle Arsenault-Benoit and Assistant Professor Megan Fritz headed off to the capital to scrounge around in dirty basements and look for mosquitoes. Could moderation of winter conditions make belowground urban structures a refugia for warmer-climate species, like Ae. aegypti and Cx. quinquefasciatus, allowing them to overcome assumed thermal barriers? To test their hypothesis they surveyed belowground levels of nearby parking structures for mosquitoes and standing water in the summer months of 2018 and 2019 and compared winter and spring temperatures  above and belowground. Their findings, published in the Journal of the American Mosquito Control Association, found several species using these structures as adults, but only a few species (and ones that can transmit disease) use them as breeding and development sties. Belowground urban infrastructure may allow populations to persist for longer and build up earlier in the spring, plus warmer temperatures can shorten the development and generational time, extending the breeding season, increasing population size, and potentially affecting disease transmission. Given these results, the authors suggest pest control operators and local public health officials incorporate surveillance of these structures into their integrated pest management programs. This article also includes new records of Aedes aegypti populations beyond the Capitol Hill neighborhood in Washington DC. 

Ngeve takes a closer look at the dispersal and connectivity of mangroves

10/13/2021

 
Photos from field surveysPhoto credit: Frontiers
UMD Research Associate & Lecturer Magdalene Ngeve and her colleagues have a new publication out in Frontiers in Conservation Science that takes a closer look at Rhizophora propagules to better understand the dispersal and connectivity of mangroves. Their study shows drift Rhizophora propagules found on a beach area in Cameroon originated well beyond the Cameroonian borders, probably from the south and/or other Atlantic island, pointing to long distance dispersal of mangroves. The evidence of this transboundary dispersal of propagules highlights the need for intergovernmental efforts in mangrove biodiversity protection. 

Follow link to see publication: https://doi.org/10.3389/fcosc.2021.746461
& share with your networks via facebook and twitter

Hooks Lab measures which farming practices lead to faster degradation of insecticidal toxins

7/29/2021

 
Veronica Yurchak, a Ph.D. student working in the Hooks Lab, and colleagues have a paper out in Transgenic Research that looks into how Cry proteins, insecticidal toxins created by Bt corn, break down after crops are harvested and whether or not farmers practices can accelerate the degradation process. Although research to date reveals few adverse effects resulting from cry proteins on non-target organisms, the authors say knowing the practices that degrade these proteins will be important for assessing the ecological risk of future genetically engineered crops. 

Share with your networks on facebook and twitter 

BIP Releases preliminary Results on Honey Bee Survey

6/23/2021

 
Bee Informed Partnership has released results from their annual survey, which highlights the continuing cycle of high honey bee colony turnover, with beekeepers and researchers hoping to find solutions.
​
“This year’s survey results show that colony losses are still high,” says Nathalie Steinhauer, BIP’s science coordinator and a post-doctoral researcher in University of Maryland Department of Entomology. "We should remember, however, that loss rates are not the same as population decline. The recent numbers of honey bee colonies in the U.S. are relatively stable despite those high losses, but that’s because beekeepers invest a lot of time and effort to increase their operation size to mitigate their losses.”

See AGNR's full press release here
​Share on facebook and twitter

PREDATION OR SCAVENGING? GRUNER LAB COLLABORATES ON A NOVEL METHOD OF MEASURING INTERACTIONS BETWEEN INVASIVE RATS & BIRDS

5/19/2021

 
​On the Hawaiian Islands invasive black rats are eating native and introduced birds. The long-term ecological impact of the rats' taste for island birds will depend on whether or not the rats are preying upon birds or scavenging their dead remains, a species interaction that can be difficult to verify through observation alone. So scientist from Smithsonian’s Center for Conservation Genomics and the Gruner Lab (grad student Madhvi Venkatraman, former postdoc Erin E Wilson Rankin and Associate Prof. Daniel S. Gruner) set out to find another way to measure these hard to see interactions. They worked out a method of using bacterial biomarkers in the rat's stomach and feces to tell whether the birds consumed were alive or dead. Their paper entitled, “Identification of novel bacterial biomarkers to detect bird scavenging by invasive rats”, was published earlier this year in Ecology and Evolution, DOI: https://doi.org/10.1002/ece3.7171.

Bee Lab Collaborates on New Approach to Control Chem Resistant Varroa Mites

4/6/2021

 
Varroa mites are a major threat to honeybee health in the US. Chemical applications have proved effective at controlling varroa mite populations in honey bee colonies, however, only to a point. The mites are developing resistance to these chemicals. Collaborative study between University of Valencia and UMD Entomology Bee Lab researchers, Grad Student Krisztina Christmon & Associate Professor Dennis vanEngelsdorp, demonstrate mutations related to tau-fluvalinate resistance in Varroa destructor are widely distributed in the US. Their research reveals an urgent need for pest management strategies based on treatment resistance. Knowing the frequency of resistant mites, the authors argue, would help beekeepers choose the right treatment for their colonies.

Burghardt Lab takes a closer look at insect herbivore behaviors in urban environments

4/5/2021

 
Graphic of behavior, location and stages of herbivors
Postdoc Lauren Schmitt and Assistant Professor Karin Burghardt have a paper out in Current Opinion in Insect Science that summarizes current literature on key insect herbivore behaviors and life stage transitions in urbanized environments. Despite an understanding of herbivore performance in ‘natural’ habitats, the authors see knowledge gaps when it comes to understanding insect behavior in urbanized ecosystems. The authors therefore encourage further research to improve our understanding of herbivore performance in urban areas, human management of soil and plant biomass, and less visible insect life stages, such as the habitat of the overwintering stages.
​
Please share with your networks: facebook, twitter

Ngeve collaborated on extensive study into mangrove species R. mucronata

3/9/2021

 
Assessing patterns of genetic diversity and structure of foundation species helps researchers better understand population dynamics in order to establish effective conservation strategies. Postdoc Magdalene Ngeve, Neel Lab, collaborated on an extensive study on the mangrove species Rhizophora mucronata in the Western Indian Ocean. Findings of that study were published in Scientific Reports earlier this month: “Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns.” The authors hope their findings will, one day, be integrated with other regional genetic data to further understand the connectivity of mangroves at a global scale.

Roswell & colleagues publish 'A conceptual guide to measuring species diversity'

3/3/2021

 
bees on flowers
Measuring and comparing biodiversity is challenging because rare species are often undetected. So, what can researchers do to address these sampling issues in biodiversity measurement? Michael Roswell, Postdoc in Espindola Lab, and colleagues have a new paper out in Oikos that recommends using two tools in tandem -coverage and Hill diversity.
​
Join us in congratulating Michael on this recent pub entitled, “A conceptual guide to measuring species diversity,” "Editor's Choice" of the March issue in Oikos, and now one of the most downloaded Oikos articles from the past 2 years.

Hamby Lab describes cultural controls used to manage SWD

3/1/2021

 
SWD cultural controlsPhoto Credit: Naiade Caparelli
Hamby Lab has a new paper out in Insects that describes the current use of cultural controls in the management of the invasive spotted-wing drosophila (SWD), a small insect that causes big problems for fruit crops. Paper entitled, “Cultural Control of Drosophila suzukii in Small Fruit—Current and Pending Tactics in the U.S.” 
​
In this paper first authors, Torsten Schöneberg (Postdoc) and Margaret Lewis (PhD student), explain cultural controls as a pest management technique that modifies production practices and the crop environment to reduce pest populations and damage. By reporting on the approaches and effectiveness of various cultural controls for SWD management, from pruning to irrigation methods, the authors hope to further encourage fruit growers to adopt these techniques as an alternative to pesticide use. 

Please share with your networks: twitter, facebook

Pick Lab Article Spotlighted by GENETICS & G3 Editors

2/23/2021

 
​Katie Reding and Leslie Pick’s paper, High Efficiency CRISPR/Cas9 Mutagenesis of the white Gene in the Milkweed Bug Oncopeltus fasciatus has been chosen for GSA journals’ 2020 Spotlight Collection of research and scholarship. The collection curated by the editors showcases noteworthy examples of genetics and genomics investigations. Congratulations to the Pick Lab for this exciting recognition!
 
Visit the collection here: https://academic.oup.com/genetics/pages/spotlight
 
More on the article: Entomology graduate student Katie Reding (Pick lab) used CRISPR/Cas9 to make a genomic deletion of the white gene in the milkweed bug Oncopeltus fasciatus. The white gene was one of the first genes identified in Drosophila, over 100 years ago, where it is necessary for the red eye color of flies. Interesting, in Oncopeltus, white is necessary for pigmentation throughout the body but it is also necessary for organismal survival, as animals homozygous for the white mutations do not survive to adulthood.  This is the first demonstration that CRISPR is effective in Oncopeltus. Methods Katie developed will be useful for researchers to test the function of other genes in this and related species.

Return of Periodical Cicadas in 2021: Biology, Plant Injury and Management

2/15/2021

 
cicadas
In the spring, trillions of periodical cicadas are expected to emerge. "They will be a source of wonder and consternation as they emerge from the earth and lay eggs in treetops.” writes Prof. Emeritus Mike Raupp in Tree Care Industry Association Magazine.

Evans co-authors pub out in Frontiers in Ecology and Evolution

2/1/2021

 
Feral honey bees HarrisonValley (cropped)_Katy Evansphoto credit: Katy Evans
Katy Evans, PhD student in Espindola Lab, co-authors new publication w/ Penn State researchers, "The Role of Pathogen Dynamics and Immune Gene Expression in the Survival of Feral Honey Bees" out in Frontiers in Ecology and Evolution earlier this month. Their research shows feral colonies may have higher tolerance to pathogens than managed honey bee colonies. Understanding environmental and genetic factors behind the feral bees' increased immunity could help beekeepers combat colony losses. 

For more details about the study, check out Penn State's press release.

Improving resistance monitoring for Bt crops

1/5/2021

 
Professor Emeritus, Galen Dively and his colleagues have a new paper out in the Journal of Economic Entomology titled, “Sweet Corn Sentinel Monitoring for Lepidopteran Field-Evolved Resistance to Bt Toxins” The study demonstrates that the sentinel plot approach as an in-field screen can effectively monitor phenotypic resistance and document field-evolved resistance in target pest populations, improving resistance monitoring for Bt crops. As a direct result of Galen’s research, the EPA has proposed a number of changes to the way the agency monitors genetically modified crop technologies. This fall Galen presented his research at the Fall Entomology Seminar Series. Check out PhD students Darsy Smith and Veronica Yurchak's Seminar Blog summarizing that talk. 

On a related note, a recent Maryland Farm & Harvest episode covered several stories on corn production, including a segment at the Beltsville Agricultural Research Center featuring Galen’s research on genetically modified corn.

UMD Entomologist discover gene critical for survival in other insects missing in mosquitos

10/1/2020

 
Congratulations to Entomology’s Alys Jarvela and Leslie Pick whose paper was just published in Communications Biology. Their research showed that mosquitos lost a gene that is essential for survival in other insects without ill effects. They also found that a related gene stepped in and took over the lost gene’s role. This discovery represents the first time that scientists identified a gene that naturally evolved to perform the same critical function as a related gene long after the two genes diverged down different evolutionary paths.

You can read CMNS press release on the paper here: https://cmns.umd.edu/news-events/features/4664 

Pick Lab Demonstrates CRISPR Effective in Oncopeltus

8/6/2020

 
In a paper published in Genetics today (https://www.genetics.org/content/215/4/1027) Entomology graduate student Katie Reding (Pick lab) used CRISPR/Cas9 to make a genomic deletion of the white gene in the milkweed bug Oncopeltus fasciatus. The white gene was one of the first genes identified in Drosophila, over 100 years ago, where it is necessary for the red eye color of flies. Interesting, in Oncopeltus, white is necessary for pigmentation throughout the body but it is also necessary for organismal survival, as animals homozygous for the white mutations do not survive to adulthood.  This is the first demonstration that CRISPR is effective in Oncopeltus. Methods Katie developed will be useful for researchers to test the function of other genes in this and related species. ​

Bess beetles nature's recyclers

6/18/2020

 
Bess beetle
Interested in seeing bess beetles, some of mother nature's champion recyclers, at work? Now is a great time, blogs Bug of the Week's Professor Raupp. Bess beetles can be spotted scurrying across the forest floor recycling wood of fallen trees.

​
​http://bugoftheweek.com/blog/2020/6/15/recyclers-in-the-circle-of-life-bess-beetles-odontotaenius-disjunctus?fbclid=IwAR3nMOEDl6zPU85efeIeIHbY71LpzDztE39PkoYLgQ0kppdWpnXDRYZjhwc

Moths and butterflies are important pollinators blogs Entomology Professors

6/18/2020

 
Moths and butterflies play a vital role in pollinating plants on wild and manged lands. So how vital are they? Associate Professor and Extension Specialist, Cerruti Hooks, and Assistant Professor, Anahi Espindola pair up to respond. The two blog in Maryland Agronomy News about the efficiency of moths and butterflies as pollinators and advocate for the conservation of these important insects.

http://blog.umd.edu/agronomynews/2020/06/05/moths-butterflies-and-pollination/?fbclid=IwAR38RrfISP3NMTRxjMpvZcEtyzgb0eny3ToMotZNc4Fi1EwD-W0nCtQ2PY4
<<Previous

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)