Department of Entomology
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Fall 2014 Colloquium: Alan Leslie

10/31/2014

 
Picture
Ever wondered what creatures are lurking in your murky backcountry drainage ditches? Well, so has freshly-vindicated Dr. Alan Leslie. Through months of trudging through these mucky landscapes, he has sought to bring to light what is happening in the turbid depths of these ditches. Not only does the soil within contain a significant proportion of the Earth’s diversity, but these specialized environments are formed in juxtaposition of constantly fluctuating aquatic ecological systems and soil chemistry composition. The habitat acts as home to many critters that provide critical support for our agricultural food systems, energy cycling, and often serve as indicators for water quality. On the Eastern Shore of Maryland, 40% of the poorly drained land surface is used for agriculture, which places these ditches at an intersection of a significant proportion of water eventually trickling into our streams, rivers, and oceans…and drinking water.

Think of these ditches not just as sporadic texture added to the otherwise flat agricultural landscape, but acting mitigation wetlands serving to reduce leaching of herbicides and pesticides; promote denitrification; and retain nutrients where they are most needed. The community mostly consists of organisms that are able to thrive in less than pristine conditions faced with constantly changing water volumes and chemical inputs. These impaired streams are brimming with different ecosystem engineering taxa that work to do similar jobs, even in the face of constant construction and deconstruction of the environment. 

So who lives in the neighborhood? Alan discovered that 92.5% of everyone in the local ditch community lives at the water-sediment interface, right on beachfront property. Is it water quality that determines who settles down in a ditch?Surprisingly, no. Alan found that these burrowing invertebrate inhabitants did not correlate with water quality but did correlate with the size of the ditch.


Read More

Fall 2014 Colloquium: Steve Cook

10/24/2014

 
Effects of Pesticides on Honeybee Metabolic Physiology

By: Steven Cook PhD
Picture
Dr. Steven Cook, Research Entomologist at USDA-ARS Bee lab, has shown that blends of pesticides can essentially ‘throw a wrench’ into a bee’s metabolic processes. He explained that constant detoxification might come at a high price. In order to keep the energetic budget balanced one or more basic biological functions (immunity, digestion, physical activity and basal metabolism) must compensate. Where exactly does the energy come from though? 

To calculate the cost of pesticides, Dr. Cook looked at the effects of commonly used   pesticides and miticides on the metabolic physiology of caged nurse bees. Bees were exposed to different groups of compounds found in agricultural settings. One round of experiments focused on 2 controversial neonicotinoids, imidacloprid and clothianidin. Three variables were measured: 1) body weight, 2) metabolic rates (CO2/O2) via a technique calledrespirometry and 3) concentrations of two key nutritional components, lipids and proteins. As a worker bee’s role in the hive changes so, too, does its nutritional requirements. Thus measurements were taken at these normal transition phases (days 4, 7, 14 and 21).

Dr. Cook found that physiological effects of the neonics were both compound and dose dependent.  While many details can be gleaned from the graphs below, here are two interesting findings: by day 14 both compounds (at high doses) 1) drastically reduced protein content and 2) increased lipid content.



Read More

Fall 2014 Colloquium: Frank Crisione

10/17/2014

 
GUY1 is developmentally regulated and is expressed in the embryonic stage of the mosquito life cycle. Once expressed, GUY1 is thought to bind to DNA, due to its specific helix-turn-helix shape, a structural domain commonly associated with DNA binding capabilities. The binding of GUY1 would then allow the expression of other genes, possibly involved in sex determination or dosage compensation. Expression of GUY1 in female mosquitoes results in total lethality by the early larvl stage; a phenotype which greatly skews the sex ratio of a population. By understanding the processes which causes this phenotype in mosquitoes, Dr. Criscione hopes to develop tactics to control the sex ratio in mosquito populations. This knowledge is critical to programs which use the release of sterile males (Sterile Insect Technique, SIT) or the release of insects carrying a dominant lethal gene (RIDL) to control mosquito populations. 
Sex-determination in the Anopheles mosquito is determined by the presence of specific sex chromosomes. Females possess two X chromosomes while males possess one X and one Y chromosome. By comparing sequence information between the male and female data sets, one can infer which regions are found exclusively on the Y, and therefore which sequences are associated with male specific genes. Using this conceptual approach, Dr. Frank Criscione was able to identify GUY1, a gene specific to the Y chromosome in mosquitoes, which is shown to generate a sex ratio bias when manipulated. 

Role of GUY1 in Mosquito Sex Determination

Picture
A helix-turn-helix domain in a protein, representing the proposed structure of the GUY1 gene
Picture
A mosquito of the Anopheles genus, fully engorged after a blood meal.

Read More

Recent ENTM Publications and Talks

10/15/2014

 
  • Neel, M. C., H. Tumas, and B. E. West. 2014. Representing connectivity: Quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery. PeerJ 2:e622 DOI10.7717/peerj.622.
  • Raymond St. Leger gave a talk titled "Malaria control by transgenic fungi" at the Department of biology, George Mason University on September 23rd.
  • Raymond St. Leger gave a talk titled "Using GM Pathogens to Control Mosquito-Borne Diseases" at  the Department of Biochemistry and Molecular & Cellular Biology, georgetown university on September 30th.
  • Raymond St. Leger gave a talk titled "Malaria control by transgenic fungi" at the Baltimore-Washington Area Malaria Symposium on October 6th.

Fall 2014 Colloquium: Sougata Roy

10/10/2014

 
Picture
Threadlike cytonemes facilitate communication between cells in a developing fruit fly tracheal system. (Photo Credit: Roy. S et al.)

The Cytoneme Connection: Challenging our Knowledge of Paracrine Signaling

As we learned in colloquium earlier this semester, even the smallest arthropods have immense diversity in both body plan and development. According to Dr. Sougata Roy, a big contributing factor to this diversity is the ability of cells to communicate and induce changes in other cells. A major research interest of Dr. Roy’s is the function of cell structures called cytonemes in the development of Drosophila larvae. Cytonemes are well-known to be present during larval insect development and have been for quite some time, but until fairly recently, no one had researched their function. Belonging to a class of cellular protuberances called filipodia, cytonemes are filamentous structures known to be present in wing and eye imaginal disks in Drosophila and in the ovaries and embryos of several other invertebrates. Dr. Roy’s research suggests that these visually strange projections of the cell membrane play an integral role in paracrine signaling.

Paracrine signaling is generally known to involve releasing signal molecules directly into the extracellular fluid, which reach target cells slowly through diffusion. Dr. Roy believed that cytonemes may somehow facilitate this process, allowing the molecules to better home in on their target cells. Armed with countless Drosophila and red and green fluorescent biomarkers, he conducted several experiments to see if this could be the case.


Read More

Margaret Palmer and Kelly Hondula findings on Mitigation of Appalachian Coal Mining Not Meeting Clean Water Act Requirments

10/3/2014

 
Margaret Palmer, SESYNC Executive Director and Professor at the University of Maryland, and Kelly Hondula, SESYNC Faculty Research Assistant, collected information on 434 mitigation projects throughout West Virginia, Kentucky, Tennessee, and Virginia. They found that criteria for projects to be deemed successful do not correspond with scientific standards for restoration.   For full story, click on link.

http://www.sesync.org/news/mitigation-of-appalachian-coal-mining-not-meeting-cwa-reqs

Dennis vanEngelsdorp in the New York Times

10/1/2014

 
Dennis vanEngelsdorp in the New York Times: The Head-Scratching Case of the Vanishing Bees

Click on the link for video and full story.  http://www.nytimes.com/2014/09/29/us/the-head-scratching-case-of-the-vanishing-bees.html?rref=us&module=Ribbon&version=context&region=Header&action=click&contentCollection=U.S.&pg

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)