Department of Entomology
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Effects of floral diversification on beneficial arthropods and ecosystem services in an edamame agroecosystem

1/6/2023

 
Flower
written by Leo Kerner
We know that pollinators play a vital role in the health of every agroecosystem, but how can the agroecosystem benefit pollinators? Kathleen Evans, a PhD student in the Department of Entomology at the University of Maryland, is attempting to figure this out. Working in the Esp
índolaLab, Katy is focused on plant-pollinator interactions and loves to engage with the public informing them of the importance of insects. She came to speak at our colloquium about her most recent project on floral diversification and its effects on beneficial arthropods and ecosystem services among edamame. Previously, Katy has worked on pollinator health in agroecosystems and sustainable honeybee management practices, and now her work takes a closer look at understanding plant-insect interaction in agroecosystems. 

The main focus of this project is floral diversification and if edamame can benefit from cross pollination. Cross pollination is the simple transfer of pollen from one flower to another within the same species. Cross pollination can occur through wind or with the aid of a pollinator, such as  honey bees, native bees, flies, and wasps (just to name a few).  In soybean, there is evidence of the benefits of cross pollination, and crosses are commonly used to develop new soybean cultivars. By supplementing agroecosystems with a greater diversity of flowering plants, it’s thought that arthropod communities may benefit from increased biological control, pollination services, and weed suppression. For Katy’s project, the effect of floral diversification was achieved by using wildflower strips and floral intercropping.  

For the project itself, two questions were posed: 
1. Does edamame benefit from cross pollination?, and 
2. What is the effect of floral supplementation on edamame reproductive outputs? 

To answer these questions, controlled pollination treatments were applied to fields of edamame where wildflower strips were placed adjacently. These treatments included hand pollination to create controlled crosses, open pollination by allowing pollinators to visit the flower, and closed-pollination where pollinators were excluded from receiving other individuals’ pollen and only allowed self-pollination. 

Katy found that at the end of her trials, edamame pods that were part of the open pollination treatment weighed more than either the closed and hand-pollinated treatments, and within the open group, edamame plants closer to the wildflower strip had even heavier pods. Among plants close to the wildflower strip there appeared to be no significant difference between the number of abortions in the different treatments. However, as distance from the wildflower strip increased, floral abortions among the open pollination treatment also increased. .

Katy reasons that cross-pollinated flowers led to a larger number of floral abortions at further distances from the wildflower strip because insufficiently fertilized flowers were aborted. The further away plants are from wildflower strips, the less pollinators are likely to visit the flowers, and the likelihood of cross pollination decreases. This also explains why openly pollinated treatments had heavier fruits compared to pollinator-excluded treatments; plants that could effectively abort insufficiently pollinated flowers could direct more resources into producing fruit with greater seed sets. Plants that were restricted to self-pollination only had to take what they could get in regards to reproduction, and so didn’t abort as often and produced more fruit but of a lower quality. Ultimately, to answer the two proposed questions, it seems that edamame benefits from cross-pollination through improved fruit quality while wildflower strips positively affect pollination quality. However floral supplementation’s effect across an entire edamame field is not uniform. In her future research, Katy plans to shift her focus from floral diversification and concentrate on exploring the biodiversity of organisms within soybean agroecosystems. Great talk Katy! 
Photo chart
photo credit: Evans

Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    April 2025
    March 2025
    February 2025
    December 2024
    November 2024
    October 2024
    June 2024
    May 2024
    April 2024
    March 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)