Department of Entomology
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Fall 2013 Colloquium: Jian Wang

11/15/2013

 
The generation of a mature insect from its larval stage might seem unimaginable at first. For instance, how can a worm-like larva transform into a winged butterfly?  They are completely different, not only in their appearance but their physiology and behavior as well.  With the correct cellular and molecular mechanisms, however, the entire process of metamorphosis can be properly coordinated, often in a swift and timely manner.  This, and questions concerning the details of this phenomenon, is precisely the subject of study for Dr. Jian Wang. After receiving degrees at Nanjing Agricultural University andShanghai Institute of Entomology, Dr. Wang went ahead to investigate the aforementioned topic, with a concentration specifically in the laboratory fruit fly, known as Drosophila melanogaster. The “lab rat” Drosophila, while a useful genetic model, can also serve as a model for insect physiology. Thus, this animal can provide crucial information on the function of genes and signaling pathways that are often, and conveniently, transferrable to their vertebrate counterparts. At the same time, scientists who study Drosophila can apply novel information learned about insect hormonal changes, reproduction, behavior etc. to insects at large, thereby providing a centralized method for studying these invertebrates as a whole.
Picture
The image above is a compilation of just a few different genotypes/phenotypes of Drosophila; the specialized field of uncovering what different genes do, many times by creating mutations and observing the resulting phenotypes, is known as functional genetics/genomics. (http://www.drosophila-images.org/2006.shtml)
One of the main questions that Dr. Wang is interested in solving is the pathway of Juvenile Hormone (JH) signaling, including the identification of signaling molecules and receptors that compose this pathway.  Initial evidence showed that the ablation, or gross removal, of a neuroendocrine structure known as the corpus allata (CA) resulted in pupae that would die prematurely before they could emerge as adults. Thus, the CA was identified as a major determinant in insect metamorphosis. Next, a series of experiments showed that when the CA was destroyed, it was possible to partially rescue the lethal developmental effects by adding any of 4 different “Juvenile Hormones”, 3 naturally-occurring hormones and the other a well-known artificial analog of this hormone.  Eventually, a complete picture was formulated for the juvenile hormone pathway: the brain stimulates the cells of the CA with neurotransmitters to produce dpp, a morphogen involved in development; and this molecule activates the TGF-β signaling pathway to produce JHAMT, an enzyme involved in the synthesis of any of three juvenile hormone isoforms.
Picture
A schematic showing, from beginning to end, the steps in generating juvenile hormone in insects; the changes in concentration of this key molecule are important for the initiation of metamorphosis (Wang presentation).
The other main topic of Dr. Wang’s research is the function of genes that are important to the development and maintenance of the nervous system. Much of this work uses a genetic mosaic technique, which can generate parts of an animal that are completely mutant for a particular gene. One well-studied brain structure in the Wang lab is the mushroom body. Critical to formation and retrieval of olfactory memory, the mushroom body is a structure composed of bundles of dendrites and axons. Ubiquitous in insects, and possessed by some non-insects as well, this suborgan has a characteristic V-shaped axonal branching pattern. The degeneration and/or malformation of these axonal lobes has been under intense study in the Wang lab, whereby the function of a gene can be deduced by the aberrant resultant phenotype observed following the generation of a mutation for that mushroom-body expressing gene. Of particular interest in the past decade or so was the function of DSCAM, a protein involved in neuron synaptic formation, the precise location where two neurons meet and communicate at the molecular level.  A multitude of mutations were generated for the gene producing this protein which resulted in two important discoveries. Firstly, a DNA sequence analysis showed that the Drosophila gene producing DSCAM is conserved, in terms of nucleotide base pairs, with a gene found in humans. Secondly, through a clever transgenic assay, it was found that pupation rate, and to a lesser extent eclosion rate, could be partially rescued by overexpressing different forms of human DSCAM in mutant flies unable to produce any DSCAM of their own. These two experiments provided evidence that human and Drosophila DSCAMs not only have a conserved sequence, and are possibly evolutionarily related, but that they are functionally conserved as well.
Picture
al compared with the wt. All of these mutations most likely occur in a gene that is responsible, at least in part, for the proper formation and integrity of the mushroom body (Wang Presentation).
Currently, the Wang Lab is continuing its quest to uncover more genes that play a critical role in the development of the Drosophila nervous system, using the mushroom body as the experimental tissue of choice. The senior graduate student, Lijuan Du, is currently investigating the overlap between the Hippo pathway and the JAK/STAT pathway. Over the years, she has found evidence that one particular gene is regulated downstream by both of these pathways. These pathways are crucial in regulating the cell cycle, carefully guiding cells through proper rates of cell proliferation and programmed cell death. The other member and writer of this blog, Justin Rosenthal, is beginning his second year in the Wang Lab. The focus of his research is the function of a single gene, Darkener of apricot(Doa), in ensuring neuronal viability through the drastic changes of metamorphosis. He has already confirmed work done by previous students that this gene is necessary for survival of the y-lobe of the mushroom body and is now devising experiments to test the role of the individual variants of this gene and the functional importance of some of the exons, or the coding parts of the gene. 
Picture
The two top images show the JAK/STAT (left) and hippo(left) pathways, delineating the intricacies of each. The bottom photo is of two mushroom bodies, visualized with a red fluorescent marker. The left is the wt condition and the right it the mutant condition. One can easily see the stark differences, wherein the mutant mushroom body is completely missing the medial-branching y-lobe(top left: http://www.nature.com/nri/journal/v3/n11/full/nri1226.html), (top right: http://www.nature.com/nrm/journal/v8/n8/fig_tab/nrm2221_F3.html) (bottom: Qiong Yao)
Article published by Dr. Wang and others: http://www.sciencedirect.com/science/article/pii/S096517481100110X

Article related to neuron patterns in Drosophila:http://www.nature.com/nature/journal/v497/n7447/full/nature12063.html


About Justin:

Justin Rosenthal received his undergraduate degree from the University of Maryland-College Park in 2011 in the Biological Sciences, with a concentration in neurobiology/physiology.  Upon beginning his PhD. Program here, Justin began investigating the role of a particular gene, darkener of apricot(Doa), in promoting neuron survival through the pupal stage of insect life, i.e. metamorphosis.  Building upon previous research, it became ever more convincing that without this gene certain neurons within aDrosophila’s brain will not survive until adulthood.  Currently he is working out the purpose of specific exons and isoforms of this gene, as several variations exist.  Further research will likely include expansion of this investigation into other non-nervous tissue.  Overall this information will provide a molecular model for how cell death, especially in neurons, proceeds. 

Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    April 2025
    March 2025
    February 2025
    December 2024
    November 2024
    October 2024
    June 2024
    May 2024
    April 2024
    March 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)