Department of Entomology
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Fall 2015 Colloquium: Dr. Robert Kula, Research Entomologist at the ARS/NMNH

12/11/2015

 

The Taxonomist, the Conservationist, the Agriculturalist, and the Historian

             In 1949, the noted nephrologist Thomas Addis described the researcher as, “Part craftsman, part practical scientist, and part historian.” Although Addis did not have parasitoid wasps in mind, this passage perfectly describes the work of Dr. Robert Kula at the USDA ARS Systematic Entomology Laboratory. Kula uses traditional insect taxonomy to answer broad scale questions about biodiversity, community ecology, and biological control of pest species. He implements large scale biodiversity studies on four continents using specimens and files from the Smithsonian Institution National Museum of Natural History (NMNH), long term fieldwork around the US, and primary literature that ranges from antiquated manuscripts to freshly minted publications. Modern scientists try to be collaborative, globally engaged researchers in order to remain competitive for positions and funding, and Kula is all of these things as a truly multidisciplinary entomologist.
PictureFigure 1. Aleiodes indiscretus wasp parasitizing a gypsy moth caterpillar. USDA photo by Scott Bauer. Image Number K7659-1
            Kula’s research centers on Braconidae, a hymenopteran family of parasitoid wasps. There are 19,439 described species, with ~50,000 species anticipated worldwide. Braconids range in size from 1 mm to 3 cm in length and are character rich, meaning they demonstrate a wide variety in color, sculpture, and shape (Figure 1). Like their appearance, braconid behavior is also diverse. Collectively, braconids parasitize insects from 7 orders and can either live alone (solitary) or in groups (gregarious). Some braconids permanently halt th development of their host when they lay their eggs (idiobionts, “living apart”), and others allow hosts to develop with the parasitoid offspring (koinobionts, “living together”) (Brodeur & Boivin, 2004). This braconid hyperdiversity makes the family a prime subject for studies on environmental perturbation and landscape level changes. 
           In 2001, Kula began a large-scale sampling of braconids at Konza Prairie in Kansas. Results from previous sampling had identified only 86 braconid species, which seemed too low for a family as species-rich as the braconids. To remedy this undersampling, from 2001-2006 Kula and his colleagues collected at sites that represented a variety of land management practices (grazing, no grazing, controlled burning, etc.) (Kula & Marsh, 2011). Kula and his research group have found that braconid diversity is reflective of management strategy, with most similarity occurring between sites managed in similar ways. Thus, adjacent sites managed very differently had different profiles of braconids. Based on these initial results, Kula estimates a whopping 234 braconid wasp species will ultimately be sampled at Konza Prairie, including many undescribed species. The results demonstrate the importance of considering how grassland management affects insects that provide services critical to ecosystem function, such as parasitoid wasps. Questions that must be addressed more frequently in conservation and restoration include the following: How do we maximize biodiversity in highly fragmented ecosystems? Can small parcels of land targeted for conservation or restoration provide sufficient resources to support organisms? To what extent do parasitic wasps such as braconids move from natural habitats into agricultural fields? Kula argues that such questions are best addressed through multidisciplinary collaboration conducted in conjunction with biodiversity research programs.

PictureFigure 2: American chestnut pre-blight. Photo: masschestnut.org
            More recently, Dr. Kula has embarked on a new line of research that he referred to as one of the most enthralling of his career. It benefits the American chestnut (Castanea dentata), which was formerly one of the commonest and most economically important tree species in the eastern U.S. (Fig. 2). At the turn of the nineteenth century, a devastating fungal disease referred to as ‘chestnut blight’ was transmitted to these mighty giants from introduced Asian chestnuts trees. Sadly, by 1930, American chestnut trees were ecologically extinct (Hepting, 1974). However, since the late 1980s, researchers have actively pursued a backcross breeding program that confers the Chinese chestnut tree’s blight resistance to its American cousin, resulting in a hybrid that is 94% American and 6% Chinese (Herbard, 2006)
             With chestnut tree revival on the horizon, Dr. Kula and his collaborators began to ask several questions, including “how did the functional extinction of the American chestnut impact its community of associated insects”, and “do herbivores on hybrid chestnut experience enemy-free space (release of pressure from natural enemies) from parasitic wasps”. This led Kula and his collaborators to develop a project on American chestnut and its associated insect fauna both pre- and post-blight. Uncovering pre-blight fauna is done by consulting literature from that period, as well as historical insect records in the  Hopkins Notes and Record System, maintained in the Department of Entomology at the NMNH. This extensive recording system used by the USDA from 1899 until the 1980s contains detailed notes about insects of U.S. forests, including herbivores on American chestnut and their natural enemies. A comprehensive literature review indicated that most reports of insects associated with endemic or exotic chestnut in the U.S. are from five species: two putatively extinct micromoths, gypsy moth, chestnut gall wasp, and small chestnut weevil. Other researchers have considered four moth species extinct due to loss of America chestnut from the forest canopy. Kula and his collaborators are assessing pre- and post-blight trophic associations to understand herbivore-natural enemy interactions in the context of chestnut restoration

PictureFigure 3: Tree canopy trap. Photo credit: Robert Kula
             The first step in assessing the impact of American chestnut loss and recovery on associated herbivores and natural enemies is determining the extent to which insects historically associated with American chestnut occur in its ancestral range.  Dr. Kula and his group, consisting mostly of Smithsonian Institution interns, set up insect flight traps (Fig. 3) in the canopies of pure American chestnut, Chinese chestnut and northern red oak trees. Traps were placed in Chinese chestnut and red oak trees because they are in the same plant genus and family, respectively, and red oak co-occurred with American chestnut throughout its historical range. One of his most exciting finds so far is a parasitic wasp reported previously from one of the two micromoths presumed extinct. This finding opens up further avenues of research: are there still viable populations of the moth species, or was the wasp species able to shift hosts? Is the host range for the wasp broader than what was reported initially?  Hand-collecting herbivores on American chestnut and related tree species will no doubt shed more light on herbivore-natural enemy interactions from contemporary and historical perspectives.
             Dr. Kula’s research nicely demonstrates how taxonomy and natural history collections can be used to simultaneously address an array of questions in different, yet interdependent, areas of biology.

References:
Addis, Thomas, Helmuth Bookplate: Sprinz, and c1948 1949. Glomerular Nephritis:
            Diagnosis and Treatment. New York: Macmillan, 1949.
Brodeur, J., & Boivin, G. (2004). Functional ecology of immature parasitoids. Annual
             Reviews in Entomology, 49(1), 27-49.
Hebard, Fred V. "The backcross breeding program of the American chestnut foundation."
              Journal of the  American Chestnut Foundation 19 (2006): 55-77.
Hepting, George H. "Death of the American chestnut." Journal of Forest History 18.3
             (1974): 61-67.
Kula, R. R., & Marsh, P. M. (2011). Doryctinae (Hymenoptera: Braconidae) of Konza 
             Prairie excluding species of Heterospilus Haliday. Proceedings of the 
            Entomological Society of Washington, 113(4), 451-491.
About the authors:
Lisa Kuder is a PhD student in Dennis vanEngelsdorp’s lab. Broadly, her research focuses on pollinator habitat along highway rights-of-way. More specifically, she is looking at the effects of de-icing salt on the floral resources of roadside wildflowers and ramifications for foraging insects.

Gussie Maccracken is a PhD student in Dr. Charlie Mitter’s Lab. Her research focuses on deep-time plant-insect associations. She is currently studying 75 million year old insect damaged leaves from western North America.

Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)