Department of Entomology
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

From Mutation to Species: What Can Sawflies tell us about Speciation? 

4/25/2016

 
What drives species apart: how does evolution turn one population into two populations that can no longer mate? This process is called speciation, and we have a lot to learn when it comes to this subject. Dr. Catherine Linnen, from the University of Kentucky, is using pine sawflies (genus Neodiprion) as a model to better understand the origins of biodiversity, from its proposed start as genetic mutations to eventual speciation.

Pine sawflies have particularly diverse characteristics (or phenotypes) in terms of their body shape, larval coloration, social behavior, and host preference, though most use some type of pine trees. Since some of these species are pests, much their biology has been well studied. Speciation is easier to study in organisms showing divergent behaviors, preferences, and morphologies because these are all characteristics that evolution is proposed to act upon in the process of speciation. These qualities, in addition to the ease of their capture and lab-rearing, make them perfect for studies on speciation.
Picture
Image shows diversity in sawfly coloration, size, preferred host, and social behavior.
How are differences in phenotype, such as host selection, driving populations apart into distinct species? What specific mutations are responsible for variations in phenotypes? Dr. Linnen proposed a phenotypic approach, which can be used to identify underlying genetic variation, using Neodiprion populations to help answer these questions
Picture
​1. Can host preference separate populations into distinct species?
In theory, this could happen in three steps: first, the colonization of a novel host; second, divergent selection on different traits; third, a reduction in gene flow leading to speciation. With a sizeable amount of biological data, Dr. Linnen was able to show that host use was the best predictor to model the speciation seen in Neodiprion species. Dr. Linnen showed an interesting example of this from her work on the saw-shaped egg-laying apparatus of adult sawflies, which is where these organisms get their common name. Different sawfly species have saws and eggs that fit well into the needles of specific host plants. In this case, she was investigating saw and egg differences of sawflies on pine trees with thick or thin needles. Since individuals with a thick saw would have lower fitness on host plants with thin needles, and since thin-sawed sawflies would ill-equipped to exploit hosts with thick needles, this trait could drive speciation. 

​When looking at mitochondrial genes for proof of introgression (exchange of genes between distinct populations as a result of mating) between species, she showed that host difference seems to act as a barrier for introgression, as well.​
Picture
Image shows variation in saw size and shape, egg size, and the typical spacing of eggs laid on different pine tree needles by Neodiprion lecontei and Neodiprion pinetum. These differences allow for these two species to specialize on different species of plants leading to potential spatial isolation even within the same geographic range.
2. Is there evidence of the same type of processes at the population level? 
If yes, two individuals from the same species, but with different hosts should show higher genetic variation than a pair from the same host. The observed data supported this trend. After accounting for genetic variation due to geographical clusters, Dr. Linnen showed that divergent selection of hosts could drive differentiation between populations of a single Neodiprion species, potentially leading to speciation.
​
3. But how? Is host use reducing inter-breeding or is there a cost associated with inter-breeding in terms of fitness?
Neodiprion females show preference when egg-laying: each prefer to lay eggs on their typical host. This behavior alone explains some spatial isolation resulting in reduction in gene flow. In addition, when females and males are placed together to test for mating preference, they prefer to mate with their conspecific (an individual of the same species), even in the absence of any host. This behavior indicates some level of sexual isolation, which would also reduce gene flow.

However, in the lab, some individuals still chose a non-conspecific mate from the other host, resulting in hybrids. Hybrids were also collected in the field. Those observations, plus the results showing some level of mitochondrial introgression suggests that sexual isolation between Neodiprion species is incomplete.

​Host preference is associated with both survival and fecundity. Each species survives and reproduces better on its typical host. This amounts to a fitness cost for hybrid phenotypes resulting in underperformance compared to specialists on either host. Egg mortality was strongly linked to the matching of oviposition traits to the hosts. In particular, traits associated with thick-needles resulted in high mortality rates when eggs were laid on pines with thinner needles.

What can sawflies tell us about speciation? Dr. Linnen’s work suggests that pine needle width is generating divergent selection pressure on host traits within and between populations of sawflies resulting in fitness costs for hybrid individuals and eventually driving speciation. By just considering how they lay eggs, sawflies can tell us a great deal. There is still more to learn as we explore the diversity of sawfly traits.

References:
Linnen, C.R. and B.D. Farrell. 2010. A test of the sympatric host race formation hypothesis in Neodiprion
​(Hymenoptera:Diprionidae). Proceedings of the Royal Society of London B. 277: 3131-3138.
 
Bagley, R.K., V.C. Sousa, M.L. Niemiller, and C.R. Linnen. In Revision. History, geography, and host use shape genome-wide patterns of genetic differentiation in the redheaded pine sawfly (Neodiprion lecontei).
 
Bendall, E.E., Vertacnik, K., and C.R. Linnen. In Prep. Selection on oviposition traits generates reproductive isolation between two pine sawfly species.
 
About the Authors:
Nathalie Steinhauer is a PhD candidate working in Dennis vanEngelsdorp’s lab on honey bee health and management practices.  Her projects aims to identify and quantify the effects of risk factors associated with increased colony mortality.

Samuel Ramsey is a doctoral student in Dennis vanEngelsdorp’s lab. His work focuses on honey bee parasites specifically targeting ectoparasite Varroa destructor and endoparasite Nosema ceranae. His project seeks to establish a deeper understanding of key aspects of both parasites’ biology with the aim of optimizing current IPM practices in respect to these organisms. ​​

Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)