Department of Entomology
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Spring 2014 Colloquium: Dr. Paul Leisnham

2/28/2014

 
Dr. Paul Leisnham has spent much of his career studying invasive, medically important mosquitoes in the United States. He has a long-term interest in their population dynamics, competition between invaders and natives, spatial patterns of invasion, and the influence of climate change on all of these interactions. And with good reason, as Dr. Leisnham explained, mosquitoes are well-documented vectors for a number of different diseases, including West Nile Virus, which hit peak frequencies in the U.S. in 2003 and more recently in 2012.

Dr. Leisnham went on to describe that many of the diseases vectored by mosquitoes have no vaccine, making the presence of adults a greater health risk. For this reason, effective management happens by targeting the aquatic larvae, rather than the terrestrial adults. Mosquito larvae utilize a number of different habitats, ranging from ponds and wetlands to birdbaths and discarded tires filled with water. Dr. Leisnham argues that these small containers may actually be one of the most important sources of mosquitoes found in urban and suburban areas.

Picture
Aedes albopictus- the Asian Tiger Mosquito. One of the most successful invasive moquitoes, now found in 40 different countries. Image courtesy of the Centers for Disease Control and Prevention
or this reason, Dr. Leisnham became interested in the role of residents in managing local populations of mosquitoes. With so many potential habitats for larvae in the backyard of an average Washington D.C. resident, Dr. Leisnham posited that resident source reduction would be critical for successful management of mosquito populations.

That left him with important questions about the attitudes and knowledge of Washington D.C. residents towards mosquitoes and their management in urban settings. Working with former master’s student Zara Dowling, Dr. Leisnham designed a survey to address the following questions: 1) Can residents reduce mosquito populations? 2) Is mosquito reduction related to the attitude of the residents? and 3) Do the residents’ level of knowledge change their attitude toward reduction?

A survey of 240 households in the D.C. area was conducted by Dr. Leisnham’s lab to address these questions. The results showed that younger, higher income residents had the most general knowledge about mosquitoes, while older, male residents knew the most about mosquitoes’ larval habitat. By comparison, lower income women were the most motivated to control mosquito populations. The data also indicated that, although resident source reduction may be important, the efforts of knowledgeable residents may be rendered ineffective by residents who are not removing container habitats from their property.

Based on these results, Dr. Leisnham then designed the Tip N Trash Program, with the goal of evaluating the success of passive educational materials for effecting resident source reduction. With the help of students, Dr. Leisnham designed and circulated educational materials, including magnets and flyers, to the same 240 households used in the survey the year before. 

Picture
The official logo of the Tip N Trash project. Image courtesy of Dr. Leisnham.
Preliminary results from this research suggest that passive educational materials have limited success. So far, Dr. Leisnham has identified an overall improvement in knowledge and attitude of residents that corresponds with education, but this has not yet translated into source reduction. Surveys of mosquito populations in this year also indicated that residents may be missing key containers where mosquitoes breed, negating the effects of source reduction.

Since beginning this line of inquiry, Dr. Leisnham has become increasingly interested in the sociological implications of his research. He plans to continue his investigation into the role of residents in mosquito management and the effectiveness of different educational tools for engaging citizen participation. He also wants to further understand the macro- and micro-scale patterns of larval mosquito occurrence that may explain overall trends in population abundance. Dr. Leisnham’s research has important implications for human health and for understanding population dynamics of invasive species; you can keep track of his research to learn more!

Further Reading:

1.       Dowling, Z.*, P. Armbruster, S. LaDeau, and P.T Leisnham. 2013. Socioeconomic status affects mosquito (Diptera: Culicidae) larval habitat with implications for vector control. Journal of Medical Entomology. In Press.

2.       Smith, C. D.*, A. H. Baldwin, J. Sullivan, and P. T. Leisnham. 2013. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus through changes in litter quality and production.  Journal of Medical Entomology 50: 521-532; DOI: http://dx.doi.org/10.1603/ME12149.


About Elanor:

Elanor Spadafora is a fourth year PhD student studying the influence of vegetation on predaceous diving beetle communities (Coleoptera: Dytiscidae) in restored and historic wetlands on the Delmarva Peninsula. She uses functional traits and behavioral studies to understand how these beetles interact with aquatic macrophytes and how this may influence trophic structure.


Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)