Department of Entomology
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

Spring 2014 Colloquium: Lijuan Du

4/18/2014

 
Lijuan Du is a senior PhD. student in the Department of Entomology at the University of Maryland in College Park, MD.  Having completed her bachelor’s degree in bioengineering at the prestigious Shanghai Jiaotong University in China, she began her graduate work in 2009 under the supervision of Dr. Jian Wang, whose lab specializes in using Drosophila as a model organism in the field of genetics. 

The fruit fly, Drosophila melanogaster, has been a model organism for over one hundred years to study genetics and developmental biology. Countless researchers work with it, and an impressively large amount of data has been accumulated thanks this work. It has been a successful model organism for many reasons. It is small, has a simple and easily produced diet, and has a short life cycle which allows many generations to be produced in a short period of time.  There are mutants available for a large number of genes, and new mutations can be induced very easily. It also has a small, compact genome of only 165 million base pairs in length, containing about 14,000 genes. One of the most interesting things about D. melanogaster is that it has orthologs to about 62% of human disease genes allowing it to serve as model for the study of many biomedical processes.

Picture
D. melanogaster (http://en.wikipedia.org/wiki/Drosophila_melanogaster)
Neuronal morphogenesis is studied by working with D. melanogaster’s mushroom bodies (centers similar to the hippocampus in the human brain), centers for olfactory mediated learning and memory.  Within the mushroom bodies there are 3 major classes of intrinsic neurons (γ, α’/β’, and α/β neurons) distinguished by morphological characteristics as well as by birth order during development (Crittenden et al., 1998). By performing a forward genetic screen, Lijuan found that the loss of JAK/STAT signaling receptor dome function in the neurons causes a gamma- only phenotype in adult fly mushroom bodies, and Lijuan further confirmed that the loss of  JAK/STAT pathway (important for growth and development) signaling was the cause of the gamma-only phenotype. She showed that the loss of dome does not affect the morphology, remodeling or survival of gamma-neurons in the mushroom bodies. She also showed that JAK/STAT signaling promotes cell division and prevents premature termination of the mushroom body neuroblasts.
Picture
Left: Mushroom body; Right: progression of intrinsic neuron class birth during development (photos from Crittenden et al., 1998)
In order to identify potential downstream targets of the JAK/STAT pathway, a reverse genetic screening was done to see which genes were able to rescue mutants which lacked the proper expression of dome.  A total of 3 genes were identified from this screen, namely diap, yorkie and cycE.  To provide further evidence for cycE as a putative downstream target, Lijuan carried out a transgenic injection, the inserted DNA having a STAT-binding site within the isolated cycE gene. The transgenic analysis confirmed that the proposed binding site within the cycE gene was indeed a STAT binding site. JAK/STAT signaling directly regulate cycE transcription in wing discs and in mushroom bodies. After this part of the experiment the function of a gene called yorkie in mushroom bodies was investigated. In together, Lijuan showed that loss of JAK/STAT and Hippo pathway downstream effector Yorkie cause similar cell proliferation defects, and higher activation of one can compensate for lack of the other. Eventually it was determined that Stat92E and Yorkie converge to regulatecycE gene expression via different cis-regulatory element. 
Picture
Proposed convergence of JAK/STAT and hippo signaling pathways (Design by Lijuan Du).

Chris Taylor is a PhD student with focal areas in IPM and insect-microbe symbioses.  He studies the brown marmorated stink bug (BMSB), and the focus of his research is on understanding the relationship between BMSB and its gut symbionts to determine whether exploiting this relationship is feasible in management programs.

Justin Rosenthal received his undergraduate degree from the University of Maryland-College Park in 2011 in the Biological Sciences, with a concentration in neurobiology/physiology.  Upon beginning his PhD. Program here, Justin began investigating the role of a particular gene, darkener of apricot(Doa), in promoting neuron survival through the pupal stage of insect life, i.e. metamorphosis.  Building upon previous research, it became ever more convincing that without this gene certain neurons within a Drosophila’s brain will not survive until adulthood.  Currently he is working out the purpose of specific exons and isoforms of this gene, as several variations exist.  Further research will likely include expansion of this investigation into other non-nervous tissue.  Overall this information will provide a molecular model for how cell death, especially in neurons, proceeds.  


Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    April 2025
    March 2025
    February 2025
    December 2024
    November 2024
    October 2024
    June 2024
    May 2024
    April 2024
    March 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
    • For PI/Faculty
    • Proposal Resources
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Forms for Grad Students
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)