Department of Entomology
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)

The Odor of a Blood-Sucking Nightmare

11/22/2016

 
 It can be a lonely world for a bed bug researcher! Dr. Mark Feldlaufer began his presentation by extending an open invitation to visit his bed bug research lab at the United States Department of Agriculture-Agricultural Research Center in Beltsville, Maryland. He assured us that the offer rarely gets takers, and it is really not surprising, all things considered. As parasites that feed on people and cause itchy welts, bed bugs give people the heebie-jeebies. Just a picture or two of the bed bugs (Fig. 1) was enough to have several attendees visibly cringe, as they imagine the marks and persistent itches that usually follow after bed bug bites. However, Dr. Feldlaufer’s fascinating research, which aims to improve bed bug detection and control, may contribute to a future where everyone can rest assured that there truly are no creatures lurking under the bed.

Picture
Figure 1: Close up of bed bugs in varying life stages. The smallest insects are young nymphs, while the largest insects are wingless adults. Adult bed bugs are approximately 0.18 inches or 4.5mm long (Photo courtesy of: USDA)
Bed bugs (Cimex lectularius), a group of true bugs (Hemiptera) in the family Cimicidae, are infamous for specializing on the blood of birds and mammals including humans. Like little vampires, they pierce the skin and suck blood from their prey. Bed bugs have plagued humanity for centuries. The many colorful nicknames for bed bugs (“crimson ramblers,” “mahogany flats,” “wall lice,” “chinches,” “brown backs,” “red coats,” etc.) highlight the fear, attention, and often even phobia, that they cause. Unsurprisingly, Dr. Feldlaufer most commonly fields the questions: “Do I have bed bugs?” and “How can I get rid of them?” To better answer these questions, he uses chemical ecology to develop tools for bed bug detection and control.
Picture
Figure 2: A woman training Brea, a German shepherd search and rescue dog, to use her refined sense of smell to locate missing persons by detecting their odor. Photo Credit: Sgt. John Crosby (Wikipedia Creative Commons)
Detecting bed bugs can be difficult. They are cryptic insects that hide most of the time and emerge at night to feed on blood. They often hide together in cracks and crevices, a behavior called “aggregation.” They prefer to be sandwiched between objects. Thus, they are rather difficult to see, but, thankfully, not more difficult to smell. We are accustomed to seeing trained dogs sniffing around to find drugs, explosives, or missing people (Fig. 2). However, what many may not know is that trained dogs are also one of the most effective methods to detect bed bugs (Pfiester et al. 2008). In a controlled experiment in hotel rooms, trained dogs were 98% accurate in locating live bed bugs. However, this method can vary significantly in effectiveness depending on the dog’s mood, how tired it is, and potential distractions. But the most significant biases often stem from human error, such as the attitude of the trainer. The dog is often able to sense if a trainer strongly believes that there may or may not be bed bugs in a particular location and is far more prone to falsely detect or fail to detect the target (Lit et al. 2011).
Picture
Figure 3: Bed bug colonies in mason jars. Bed bug frass is visible on the paper towels, and shed skins pile at the base of the jars. (Photo courtesy of: Dr. Mark Feldlaufer)
In a setting where there are high numbers of bed bugs, their presence can be apparent even without trained dogs. While developing, bed bugs shed their skin, which look like cream-colored crumbs, and their frass (fecal matter) which look like sooty black stains (Fig. 3). It is also possible, although unusual, to see a bed bug fleeing the scene. Nonetheless, in those critical times when an infestation is just beginning to establish, populations are small and difficult to locate. This is when the merits of bed bug detecting dogs become clear. Properly trained dogs (and handlers) can be used to detect infestations early when populations are smaller and easier to control.
often do not come in contact with them. It is impractical, dangerous, and against labelled usage, to coat every surface and crack of a home or business in insecticide, so bed bug chemical treatments often fail. The silver bullet control method appears to be heat treatments, but, like silver, heat treatments are expensive. Homes are heated to between 120-140⁰F for several hours to kill all bed bug life stages, which tend to cost anywhere between $2,500-$7,000. Though bed bugs themselves do not discriminate against the rich or poor, our methods of remediation tend to do just that. The most effective way to get rid of bed bugs is unaffordable to many.

In the course of his bed bug research, Dr. Feldlaufer has worked on other projects to help to detect and control bed bugs early in their infestations with a number of students, including our very own Dr. Kevin Ulrich. The team found that bed bugs consistently avoided a common chemical insect repellent, DEET, the main ingredient in most mosquito repellents. They did not, however, respond with greater avoidance to higher dosage. Although this may seem like a quick and easy fix, wearing DEET to bed may just cause bed bugs to merely move on to other surfaces (e.g. the couch). On the other hand, they also found that aldehyde compounds produced by bed bugs elicit a strong attractive response to other adult and immature bed bugs. These aldehydes may be one way bed bugs attract each other to form aggregations (Ulrich et al. 2016), suggesting that the aldehydes may be used to develop an inexpensive and more discreet option to lure and trap bed bugs. Dr. Feldlaufer currently aims to develop and test reduced risk pesticides that show promise in killing bed bugs.

Bed bugs can be a terribly menacing presence in anyone’s home, but thankfully Dr. Feldlaufer has dedicated much of his career to keeping us informed about these insects and their crafty activities. By pairing lures with reduced risk pesticides, Dr. Feldlaufer aims to develop options to safely, affordably, and discreetly ensure we can sleep tight assured that the bed bugs will not bite.

References:

Lit L., Schweitzer J.B., and Oberbauer A.M. 2011. Handler beliefs affect scent detection dog outcomes. Animal Cognition 14: 387.
Pfiester M., Koehler P.G., and Pereira R.M. 2008. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs. Journal of Economic Entomology 101(4):1389-96.

Ulrich, K.R., Kramer, M. and Feldlaufer, M.F. 2016. Ability of bed bug (Hemiptera: Cimicidae) defensive secretions (E)-2-hexenal and (E)-2-octenal to attract adults of the common bed bug Cimex lectularius. Physiological Entomology 41: 103-110.

Author Bio:

Hanna Kahl is a master’s student at University of Maryland in Dr. Cerruti Hooks’ lab researching the effects of red clover living mulch on arthropod pests and pollinators.

Samuel Ramsey is a PhD student at University of Maryland in Dr. Dennis vanEngelsdorp’s lab researching Varroa destructor.


Comments are closed.

    Categories

    All
    Awards
    Colloquium
    Faculty Spotlight
    Fall 2013 Colloquium
    Fall 2014 Colloquium
    Fall 2015 Colloquium
    Fall 2016 Colloquium
    Featured
    Innovation
    News
    Publications
    Science Projects
    SESYNC
    Spring 2014 Colloquium
    Spring 2015 Colloquium
    Spring 2016 Colloquium
    Talks
    Undergraduate

    Archives

    September 2022
    August 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013

    RSS Feed

Picture
Picture
Picture
Department of Entomology 
University of Maryland 
4112 Plant Sciences Building 
College Park, MD 20742-4454
USA

Telephone: 301.405.3911 
Fax: 301.314.9290
Picture
Picture
Web Accessibility
  • About
    • At a Glance
    • Welcome From the Chair
    • Code of Conduct
    • Diversity, Equity, and Inclusion >
      • DEI Working Group
      • Resources
    • Departmental History
    • For Alumni
    • Support Entomology >
      • Steinhauer Scholarship Fund
    • Proposal Resources
    • Contact >
      • Directions
  • News
    • News
    • Seminar Blog
    • Seminar Schedule
    • Awards
  • People
    • Faculty
    • Post Docs
    • Students
    • Staff
    • Alumni
  • Academics
    • Graduate >
      • Admissions
      • MS Degree Requirements
      • PhD Degree Requirements
      • Graduate Student Resources
      • Financial Assistance
      • Award & Funding Opportunities
      • Entomology Student Organization
    • Online Masters in Applied Entomology
    • Undergraduate >
      • Entomology Minor
      • Honors Program
  • Research
    • IPM & Biological Control of Agricultural, Urban & Forest Pests
    • Ecology, Conservation, Restoration, Climate Change >
      • Pollinator Science and Apiculture
    • Evolution, Systematics and Evo-Devo
    • Genetics & Genomics and Medical Entomology
  • Extension/Outreach
    • Educational Outreach
    • Insect Camp
    • Insect Drawings
    • Insect Identification
    • Pesticide Education and Assessment Program
    • Plant Diagnostic Laboratory (PDL)